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Abstract

Fire detectors must accurately detect fires, but they should not respond to false alarms.
Contemporary smoke detectors sometimes cannot discriminate between smoke and odor
sources. These detectors can also be slow in responding to smoldering fire sources. In
this paper, a statistical approach for detecting fires based on fusing sensor signals from
multiple sensors is presented. The multivariate statistical approach, called principal com-
ponent analysis, is used to compress the sensor information down to a small number of
variables that can be interpreted more easily than the raw sensor signals themselves.
Experimental results presented here show that the proposed approach is more accurate
than a conventional smoke alarm, particularly for early detection of smoldering fires.
However, this new approach does not overcome the problem of false alarms. In spite of
this current limitation, the method discussed holds great promise for future fire detection
applications.

Introduction

Fire detectors are intended to be sensitive enough to detect fires promptly but not
so sensitive that they react to false sources. Contemporary smoke detectors can
respond quickly, but generally cannot discriminate between smoke and odor
sources. The inability to discriminate between sources is a significant limitation.
Data from U.S. fire incidents during the 1980s indicate that 95% of all alarms
from smoke detectors were unnecessary.!

One solution proposed for minimizing unnecessary alarms without sacrific-
ing prompt activation involves using intelligence along with current detector
technology. Some recently developed intelligent detectors move in this direc-
tion by incorporating the capacity to correct for background noise, ambient
conditions, or changes in detector sensitivity.2* However, these contemporary
detectors still are not capable of adjusting even to commonly encountered tem-
porary conditions from tobacco smoke, cooking odors, or aerosol sprays. The
next step in the evolution of a smart detector involves incorporating intelli-
gence, possibly with additional sensors, to provide the capability to discrimi-
nate between conditions from fire and nonfire sources, without sacrificing
response time.*

An appreciable amount of effort is being expended by industry to develop odor
detection based on an analysis of the response from an array of sensors.> For
example, applications for smart detectors that have been developed for the food
and tobacco industry include process control for products such as coffee and
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beer, and quality control evaluations of coffee beans and tobacco blends for cig-
arettes. Implementing odor detectors for these industrial applications has shown
that an accurate assessment of environmental odors is possible as a result of
recent developments in sensor technology and analysis techniques.

The feasibility of applying odor detection using metal oxide sensors for fire
detection has been demonstrated by Okayama.®’ In detecting an odor or a fire,
the most desirable situation would involve using completely independent sensors
that measure distinct phenomena. Often, however, such independent sensors can-
not be found, and one is forced to work with sensors that are not unique and
which respond to a number of different phenomena. In this paper, a statistical
approach to handling the analysis of measurements from nonunique sensors is
discussed.

Teams in the Departments of Fire Protection Engineering and Chemical
Engineering at the University of Maryland are conducting ongoing research to
determine whether a sufficient distinction in fire signatures can be observed to
support developing a smart fire detector. The fire protection engineering team is
concentrating on identifying signatures from fire and nonfire sources. The chem-
ical engineering team is applying signal processing techniques, including statis-
tical methods, expert systems, and neural networks, to investigate the sensor
response patterns and provide the discrimination capability between fire and
nonfire sources. This paper discusses the use of modern, multivariate statistical
methods to process signature data from multiple sensors.

In the chemical process industries, distributed control systems routinely collect
process data on hundreds, or even thousands, of process variables in real time.
The measurements typically involve variables like flow, temperature, pressure,
and level. Increasingly, quality measurements such as composition, or product
properties, are also being logged. Process operators can be swamped with the
sheer volume of information available on a process. In order to cope with this
information explosion, multivariate statistical approaches are beginning to be
employed effectively to help operators diagnose abnormal operating condi-
tions 3910 These multivariate approaches, coupled with modern sensing technol-
ogy, hold promise as 2 means of detecting fires more accurately. The purpose of
this paper is to give an overview of these statistical approaches, and to show how
well they work on experimental fire data.

There are two broad types of multivariate statistical methods being used. These
methods fall under the headings of principal component analysis (PCA), and par-
tial least squares (PLS).* With PCA, one has a set of measurements, x, in which
the individual components, x,, are typically correlated with one another. For
example, x may consist of several temperatures, all of which go up when one
goes up. With PLS one has the x measurements as well as a set of y variables that
are to be predicted from x. For example, the y variables might be product quali-
ty, and the x variables might be process conditions such as temperature, flow,
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pressure, and so on. The result of a PLS analysis is a model to predict y from x.
For the fire detection problem, the PCA methods are more applicable. The
remainder of this paper is restricted to these methods.

Multivariate Statistical Methods

PCA dates back to 1901, when it was introduced by Pearson,'! and to 1933, when
the concept of PCA was generalized by Hotelling.!? PCA uses a set of experi-
mental measurements arranged in a data matrix, X. Each row of X consists of one
set of readings for all m of the x,’s under consideration. The number of rows in
X, n, equals the number of experimental measurements made. Methods are avail-
able to handle the case where some x,’s are missing for particular rows.? In chem-
ical process applications, there are usually many more elements in x than there
are underlying degrees of freedom in the process. This is due to the correlation
of raw measurements. PCA finds linear combinations in the raw measurements
that are capable of explaining most of the variation in the raw data.

To understand how PCA works, consider the two-dimensional data set shown
in Figure 1. The o’s represent the collected x,, x, data. Though two variables are
measured, it is apparent from the plot that these variables are strongly correlated
with one another. When x, goes up, so does x,.

Before discussing the mathematics of PCA, a qualitative description will be
given. Suppose that one posed the problem of finding a linear combination of x,
and x, with the maximum possible variance, subject to a magnitude constraint on
the linear coefficients. The result of solving this optimization problem would be
the first PCA component, the straight line shown in Figure 1. If one used this lin-
ear relationship, rather than the raw measurements, then almost all of the varia-
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Figure 1. Two dimensional illustration of PCA.
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tion in the measurements would be accounted for. In essence, PCA compresses
measurements down to a lower dimension, and researchers have found that data
interpretation is easier in the reduced space. For two dimensions, the best one can
do is reduce the dimensionality to one. In most real applications, PCA achieves
a very large reduction in dimensionality, without significant loss of accuracy. For
example, on one real data set involving 41 measurements, we were able to
attribute 80% of the variation in the data to 4 PCA components.?

PCA Mathematics

Mathematically, PCA is based on solving this optimization problem:'?

max p Xp,
151
subject to
p.p =1 (0

where X is the matrix of data, p, is the set of coefficients, called loadings, to be
determined via optimization, and the symbol ' indicates matrix transformation.
The solution to Equation 1 gives the direction of maximum variation in the data
set under study, that is, the first principal component. After finding the coeffi-
cients of the most important direction, p,, the coefficients of the next most
important direction, p,, for the second principal component are found by sub-
tracting out the contribution of the first direction and solving essentially the same
optimization problem. One proceeds to find directions in this manner until a
stopping criteria is met, for example, at least 80% of the data variation is
explained. Using the singular value decomposition of the data matrix, X, one
can solve Equation 1 to determine p,. Using singular value decomposition, X can
be written as:

X=UZP' (2)

where U is an n X r matrix, 3, is an n X m matrix whose off-diagonal elements
are zero, and P is an m X m matrix. The first column of this P matrix is p, the
solution to Equation 1." The remaining columns give the other PCA directions,
p;- The matrix product UZ, is defined as the score matrix, T, and thus the data
matrix can be written as:

X=TP 3)

One of the useful properties of the P and T matrices is that their column vec-
tors form an orthogonal set. Thus:
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li=j
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As the result of the orthogonality properties of T and P, X can be written as the
bilinear product:

X=¢p, +t,p,+.....t.p, )
and T can be calculated from X as:
T =XP )

Equation 5 is an exact decomposition of X, since all m terms are used. PCA
approximates X with a smaller number of terms, 7 where typically r <m. For two
terms, Equation 5 becomes:

X=tp +t,p, o)

As stated earlier, the goal of PCA is to use as few terms as possible but still
give an accurate representation of X.

To use PCA for detecting faults in chemical plants, one starts by collecting data
when the process is running fault-free. This data for normal, good operation is
then used to build the PCA model. In this section, it will be assumed that two
PCA components give adequate model accuracy for the data. The number of
terms to use has to be determined for each application.

One aspect of the two-component PCA model is shown graphically in Figure
2, where the scores are plotted against one another. In Figure 2 the o’s represent
the good data used to build the model. The ellipse is the confidence limit on the
scores for this data, for example, a 95% limit.

Jackson'has discussed how this confidence limit can be calculated. The n's in
Figure 2 represent new data taken after the model was built. Note that all the
measurements contribute to each score point, (1,,¢,). If a set of scores, designated
by x in Figure 2, falls outside the confidence limit, then one can conclude that
something has changed in the process. This change may involve a fault, or the
fact that the process is operating in a different region than it did when the model
was built. Additional information is needed to determine whether a fault has
occurred.



Using Multivariate Statistical Methods to Detect Fires 11

Another useful plot, illustrated in Figure 3, involves the squared prediction
error (SPE), defined for two PCA components as:

SPE = (z £1,p, £1,p,)’ )

The SPE measures the ability of a reduced dimensional PCA model to predict a
set of measurements, z = (x,,x,..x,). First ¢, and ¢, are calculated by applying
Equation 6 to z, and then an estimate of z is calculated using Equation 7. Both
t, and 1, are linear combinations of all the measurements, ¢, = z*p,, with the lin-
ear coefficients being the components of the p, vectors. Note that for a new data
set, z, the £’s are scalars, while for the original data set, the t’s are the vectors
of the scores for each row in X—that is, each entry in t, gives one score for each
row in X.

A confidence limit can also be calculated for the SPE, as discussed by Jackson
and Mudholkar.”® Their equations for the confidence limit are given in the
Appendix.

The o’s, n’s, and x’s have the same meaning in this plot as in Figure 2. To use
this plot, one would calculate the SPE for new data being measured. As long as
the SPE remains below its confidence limit, then one can conclude that the new
data agrees with the PCA model. Since the PCA model is based on good opera-
tion, the implication of an SPE below its confidence limit is that the new data
indicates fault-free operation. If the confidence limit is exceeded, as indicated by
the point labeled x, then the model is no longer accurate, and a fault is suspect-
ed, particularly if the operating region has not changed.

The score and SPE plots have proven to be very useful in detecting faults in
chemical processes. Both plots represent a very large compression of informa-
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Figure 2. Scoreplot.
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tion. Process operators do not have to look at individual process measurements
to detect a problem. Rather, they can look at a few diagrams, such as Figures 2
and 3, and through them monitor all process measurements. It should be empha-
sized that each plot reflects all of the measurements being made.

Modern Sensor Technology

PCA analysis is most effective when one has measurements from many sensors
at once. A much greater compression of information occurs when 50 sensors
can be reduced to a few scores than it can when only two sensors are involved.
Also, use of many sensors may lead to better separation of classes, and there-
fore, more accurate classification —that is, fire detection. Today, scientists are
producing arrays of microsensors on computer chips that can measure many
hundreds of readings simultaneously. In this paper, it is impossible to give a
thorough overview of the status of sensor research today. Rather, a brief
description of one sensor system that we are testing for its fire detection abili-
ty is described.

Figure 4 shows a blowup of one sensor element'® of such a system. This
device consists of a micromachined bridge, which supports these three succes-
sive layers separated by insulation: first, a polysilicon heater; second, an alu-
minum hot plate with electrical connections for four-point temperature mea-
surement; and third, open aluminum contact pads to make electrical contact to
a deposited overlayer. The sensor is based on measuring conductance changes
of the deposited semiconducting oxides at elevated temperatures. This device
is fabricated using a combination of CMOS device fabrication and post-CMOS
processing steps. The use of CMOS chips offers the advantages of high relia-
bility, low cost, and simple integration of on-chip electronics for multiplexing
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Figure 3. Squared prediction error plot.
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and signal processing.

As shown in Figure 4, the dimension of the element is ~200 microns square.
Thus, assuming that the associated signal processing and power circuitry each
occupy the same space as the sensor, in one square inch over several hundred
individual sensors can be placed in an array. By coating each sensor with a dif-
ferent semiconducting material, several hundred different readings can be made.
In an actual sensor, it would no doubt be uneconomical to use this many differ-
ent coatings, but this number does indicate the diversity of possibilities. In addi-
tion, the fabricators of the chip shown in Figure 4 have developed an approach
to cycling the temperature of each sensor to further enhance its selectivity.'s

The net results of both the number of sensors and the possibilities to manipu-
late the temperature profile lead to an information-rich and complex set of sen-
sor readings. It is precisely for such a complex signal that PCA holds its greatest
promise. In our fire experiments, we made a total of six measurements. Many
more variables can be measured in the future using sensor arrays, and in this way,
the potential for enhanced fire detection will be magnified greatly.

Al contact

............... Deposited film
;B Al plate Si0,

Si heater \

Figure 4. Thin film gas sensor taken from Cavicchi ef al.'s
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Large-Scale Experimental Program
Large-scale experiments have been conducted to determine whether the trends
identified in small-scale experiments'? also existed in large-scale environments.
Signatures from a wide variety of fire and environmental sources were moni-
tored, and sensor response patterns were explored.

The large-scale experiments were conducted in a 3.6 m x 3.6 m room with a
height of 2.4 m.!* Measurements included temperature; mass loss of the fire
sources; CO, CO,, and O, concentrations; light obscuration; and the voltage out-
put from two metal oxide sensors (Taguchi models 822 and 880). In addition, two
commercial smoke detectors (one photoelectric and one ionization) were mount-
ed on the ceiling, at the center of the room. For a diagram of the room, including
the relative locations of the sensors, see Figure 5.
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1. Thermocouple tree 6. Helium-neon laser
2. Taguchi sensor (TGS 822) 7. Load cell
3, Taguchi sensor (TGS 880) 8. Ionization smoke detector
4.3/16" copper sampling tube 9. Photoelectric smoke detector

5. Photocell

Figure 5. Diagram of test room.
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The metal oxide sensors responded to the presence of oxidizable gases and
environmental odors respectively. Mass loss measurements were used to estimate
the yield fractions of the signatures from the fire sources. Because the tests were
conducted in an unconditioned space, data were collected for at least two min-
utes before introducing any source, in order to document ambient conditions.
This ambient data is used to build a PCA model under the assumption that it rep-
resents normal, nonfire operation. Table 1 gives a summary of the variety of
sources used to generate conditions within the room. Again, these were intended
to be representative of residential fire and nuisance sources.

Flaming liquid tests were conducted by placing 50 ml of the sample in a pre-
cooled metal container ignited by a match. The container was cooled before the
tests to limit evaporation of the liquid before initiating flaming. Tests with flam-
ing solids involved placing the fuel in an aluminum pan, then igniting the fuel
with a match. Tests with pyrolyzing solids were conducted by placing the fuel in
an aluminum pan on a preheated hotplate.

The tests involving the environmental sources were conducted using several
approaches, depending on how the product is typically used in a residence. One
approach consisted of dispersing the product throughout the room, including
water mist, cigarette smoke, and household aerosol products. Alternatively,
solid and liquid products, such as bleach, nonacetone nail polish remover, boil-
ing liquids, coffee, and toast were located at floor level in the center of the
room. The test with toast was conducted by placing the bread in a toaster that
was kept “on” throughout the test. Tests with coffee used both fresh coffee
grounds and brewed coffee.

Applying PCA to Fire Experiments

The fire experiments consist of 87 tests broken down as follows: 34 flaming, 16
smoldering, and 37 nuisance cases. Six of the sensor readings recorded during
the tests were used to develop the PCA model. These were CO, CO,, two Taguchi
sensors (T880, T882), temperature, and light obscuration. Before beginning any
test, data for all six sensors were recorded. The data for each sensor were scaled
to zero mean and unit variance. This data was taken to be that for normal, good
operation, and a PCA model was built using it. The results are given in Table 2.

Three PCA components explained almost 76% of the variability of the normal
data, so three components were used in subsequent analysis. Subsequent test data
were scaled using the means and variances of the normal data.

The SPE was used to flag abnormal situations, with its confidence limit being
set at 99.5%. When three consecutive SPEs exceeded the 99.5% confidence
limit, an abnormal situation was declared. To distinguish among flaming fires,
smoldering fires, and nuisances, it was necessary to examine the scores. Table 3
gives the complete scores resulting from the PCA analysis.

The scores shown are those that occurred when an abnormal situation was
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TABLE 1
Test Sources

Heated Fuels Environmental
Liquid Solid Gas Sources
heptane, paper, cotton, propane propane, aerosols
1-proponal, polystyrene, (disinfectant,
methanol, pine, cardboard, furniture polish,
toluene, cheesecloth, cooking spray,
vegetable oil'  toast? hair spray), nail

polish remover,
ammonia-based
window cleaner,
bleach, water mist,
boiling water, toast,
cigarette smoke,

coffee
1. boiling only
2. smoldering only

declared. Also shown is a comparison between the detection times for the PCA
model and an ordinary smoke detector. The PCA approach missed detecting two
smoldering cases. The smoke detector failed to detect 8 smoldering and 8 flam-
ing fires. After studying the scores in Table 3, these three rules were developed
to classify an abnormal event: I t, > 5, then there is a flaming fire. If -8 < t, <0,
then there is a smoldering fire. Else, there is a nuisance.

It should be noted that these rules are specific to the fire tests that were con-
ducted. If data are generated on other systems, then it should be possible to
develop rules in a manner similar to those used here.

The rules developed have some physical interpretation behind them. An exam-
ination of the loadings in Table 2 shows that CO, contributes the most to 7,. Large
values of CO, result in flaming fires, and these large values lead to large values
of ¢, This is why the first rule involving ¢, was developed. The second “if” state-
ment was developed from studying the score plots, and it was more difficult to
write down, since the nuisance and smoldering cases tended to overlap. Figure 6
shows a projection of the scores in Table 3 onto the ¢~t, plane for the smolder-
ing and nuisance cases. Note that the various cases are intermingled, and it is not
possible to separate them completely with simple rules. Our rules successfully
flagged 14 out of 16 smoldering cases, but 10 of the 37 nuisance cases were mis-
classified as smoldering fires. Thus, there were 2 errors and 10 false alarms.

In addition to the benefit of detecting smoldering fires with a greater frequen-
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| TABLE 2

Principal Component Model

17

Percent Variance Captured by PCA Model
Principal %o Cumulative %
Component Eigenvalue Variance Variance
1 1.8700 31.1660 31.1660
2 1.4766 24.6096 55.7756
3 1.2086 20.1427 75.9183
4 0.6578 10.9630 86.8813
S 04678 7.7963 94.6776
6 03193 5.3224 100.0000
PCA Loadings

p] pz p3
T822 0.5119 -0.3136 03216
Co -0.4875 -0.2472 -0.1623
Cco2 -0.0048 -0.1294 0.8433
Light Obsc. -0.5605 0.1317 0.3273
T880 0.1463 -0.7189 ~-0.2204
Temperature -0.4059 -0.5381 0.0590

cy than the commercial detectors, the PCA approach resulted in reduced detec-
tion times in all flaming fires and in all the smoldering fires. Table 4 presents a
comparison of detection times. As indicated in the table, the mean detection time
for flaming fires is reduced 45 s, representing an average decrease of 57%. In one
case, the detection time for one flaming fire was reduced from 260 s to 16 s. The
average reduction in detection time for smoldering fires was 245 s, with an aver-
age decrease of 30%.

Clearly, 2 errors and 10 false alarms out of 87 cases is not acceptable. To
improve this ratio, more sensors need to be used. They should be chosen so that
the scores for the nuisance and flaming cases separate and an accurate distinction
can be made. As discussed, sensor research has progressed to the point where
several hundred different gas sensors can be put on a chip. While exactly what
Sensors to use remains an open question, such a chip, coupled with multivariate
statistical approaches, holds great promise as a means of achieving improved fire
detection.
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TABLE 3
Detection Times for Conventional Smoke Alarm
Detection Time {min) Scores

File | Type- | Detector | PCA Model | t, t, t,
72904 S 11:31 11:58 1.82 -1.37 1.44
72906 S 14:06 9:36 3.27 -2.35 1.84
72702 S 13:40 11:54 221 -2.67 1.11
72505 S 13:46 8:14 0.35 -4.74 0.05
72507 S 12:38 9:20 2.70 -7.32 1.72
80102 S 13:58 10:48 3.00 -5.70 1.49
80806 S 15:24 12:22 3.98 -5.63 1.70
80905 S 14:24 11:18 2.26 —4.04 1.58
72902 s — 12:40 4.13 -3.62 2.39
72602 S — 10:52 143 -2.31 0.62
80402 S — 11:18 1.73 -5.64 —0.51
72502 S — 10:58 0.77 -4.35 0.38
80302 s — 11:14 249 -5.02 0.85
80502 s — 10:52 1.92 =392 2.06
72709 S — — — — —
72506 S — — — — —
72710 f — 0:28 0.84 -0.67 6.25
72910 f — 0:14 0.12 -2.08 6.22
80804 f — 0:12 084 -1.25 932
80505 f — 0:08 1.44 -3.78 17.01
80507 f — 0:10 1.26 -2.20 13.66
80508 f — 0:06 0.57 -3.60 21.89
80906 f — 0:10 0.54 -5.89 29.62
80306 f — 0:08 062 =267 17.06
72501 f 0:16 0:08 -008 -343 23.67
72601 f 0:14 0:08 0.12 -0.69 33.13
72607 f 1:30 0:18 1.96 —4.74 13.14
72701 f 0:16 0.08 ~125 524 1598
72704 f 0:58 0:24 0.22 -1.18 8.07
72705 f 0:34 0:20 1.50 -4.63 7.27
72711 f 0:58 0:12 0.21 -0.04 598
72901 f 0:22 0:08 002 353 34.18
72905 f 0:40 0:08 -1.14 0.46 9.57
72907 f 1:38 0:10 0.02 1.28 11.62

« 5 smoldering, n: nuisance, f: flaming, —: no detection
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TABLE 3, CONT.
Detection Time (min) Scores

File | Type° | Detector | PCA Model | t, t, t,

80101 f 0:22 0:08 027 426 6.06
80104 f 0:24 0:10 119 -2.34 8.47
80105 f 1:50 0:10 -131  -254 11.80
80108 f 0:20 0:08 084 -385 1600
80301 f 0:20 0:08 078 -3.66 2490
80304 f 0:20 0:10 -108 463 1398
80401 f 0:14 0:08 -233 545 3165
80501 f 0:20 0:08 -2.13 -348 23.13
30801 f 0:22 0:08 071 005 32138
80802 f 3:40 0:38 -0.15 049 6.51
80803 f 0:32 0:12 054 332 2671
80805 f 1:20 0:08 -065 -306 2144
80808 f 0:40 1:10 -138 435 2626
80809 f 4:20 0:16 -027 285 823
80810 f 2:08 0:12 -142 226 1047
80901 f 0:22 0:08 008 454 25383
72911 n 0:10 1:04 246 -161 1.05
72608 n 0:10 0:10 3527 -7921 -941
80410 n 0:16 : 0:10 3341 -81.11 -7.74
80407 n 16:38 9:24 055 =509 1.61
72708 n 21:02 20:20 130 -3.07 -039
72503 n - 0:08 2854 -5682 098
72603 n — 0:08 2766 -55.60 -0.64
72604 n - 0:10 3441 -80.81 -6.58
72605 n — 0:48 3.14 644 247
72609 n — 1:48 324 004 104
72703 n — 0:30 2394 -32.14 292
72706 n - 5:46 212 -305 080
72903 n — 0:08 29.10 -5229 -1.26
80303 n - 0:08 2946 -5756 -1.82
80305 n - 8:30 676  -9.24 1.52
80307 n — 8:30 204 -1074 -136
80403 n - 0:10 2937 -61.04 -1.64
80404 n - 3:40 1.65 -292 1.11

< s: smoldering, n: nuisance, f: flaming, —: no detection
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TABLE 3, CONT.

Detection Time [min) Scores

File | Type" | Detector | PCA Model | t, t, t,
80405 | n — 1:08 093 =524 172
80406 | n — 1:18 3.04 -6.13 092
80408 | n - 7:56 151 -582 080
80506 | n — 7:24 786 -1007 175
80807 | n — 4:34 272 —-481 0.3
80103 | n — 0:08 28.88 -54.67 -0395
80106 | n — 0:08 2738 -5537 -121
80409 | n - 0:10 2456 -5539 -2.53
80503 1 n - 0:10 3103 6035 -185
72909 | n - —_ - - —
80107 | n — — — — -
80504 | n - — - - -
80902 | n — — - - —
80903 | n — — - - —
80904 | n - - - — -
72504 | n — — — - —
72706 | n — — - -~ —
72707 | n — — - - —
72908 | n - — - - —

« s: smoldering, n: nuisance, f: flaming, —: no detection

Summary

As a result of the experimental effort, an early fire detector consisting of an array
of gas sensors appears feasible, with discrimination provided by a principal com-
ponent analysis (PCA) of the sensor responses. It has been shown that discrimi-
nation among a flaming fire, smoldering fire, and a nuisance source can be done
effectively using the PCA factors. However, many questions must be addressed
before applying this technology as a means of early fire detection.

Due to the small number of sensors used, namely six, a number of false alarms
occurred for nuisance sources, which were classified as smoldering fires. Adding
more sensors should help to alleviate this problem. Additional research is
required to optimize the number and types of sensors to be included in the array,
while still providing the desired level of sensitivity and discrimination ability. In
addition, the data has been acquired from experiments conducted with one type
of source, for example, a flaming source without a nuisance source being present.
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TABLE 4
Time to Detection

Flaming Fires | Smoldering Firves
Total 34 16
Number of fires
undetected —commercial 8 8
Number of fires
undetected —PCA 0 2
Average reduction in 45 245
detection time (s) (57%) (30%)
Range of reduction in 6-244 182-332
detection time (s) (41-94%) (20-40%)
Score Plot
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Figure 6. Projection of scores for nuvisance and flaming
experiments, t,~t, plane.
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Additional experiments are needed to assess the potential for a nuisance source
to mask a flaming or smoldering source.
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Nomenclature

Defined by Equation A-5

1 -(26,6,/(36,))

Number of PCA components used in model

Total number of measurements

Column vector of loading coefficients for PCA factor ¢
Matrix of loading vectors. P = [p,py..P,]

Confidence limit on SPE at level o given by Equation A-6.
Score value for a new measurement, z. ¢, = z*p,

Column vector of scores equal to X*p,

Matrix of score vectors. T = [¢,,t,,...2,]

Matrix calculated in singular value decomposition of X
Individual measurement of variable

Column vector of measurement x, from different experiments
Matrix of data used to build PCA model. X=[x,,x,....x,]]
Row vector of new measurements. z = (X, X,...X,)
Confidence level

Parameter defined by Equations A-1 to A-3

Diagonal element of

S0

Q <

DN MHH R OEHTTOUE IS

Q-

References

1. Hall, J. R., “The Latest Statistics on U.S. Home Smoke Detectors,” Fire
Journal,Vol. 83, No. 1 (1989), pp. 39-41.

2. Bukowski, R. W. and O’Laughlin, R. O., Fire Alarm Signaling Systems.
Quincy, Mass: NFPA, 1994,

3. Thuillard, M., “New Methods for Reducing the Number of False Alarms in
Fire Detection Systems,” Fire Technology, Vol. 30, No. 2 (1994), pp. 250-268.

4. Grosshandler, W. L., An Assessment of Technologies for Advanced Fire
Detection. Gaithersburg: NIST, 1992.



Using Multivariate Statistical Methods to Detect Fires 23

5. Gardner, J. W,, Shurmer, H. V. and Tan, T. T., “Application of an Electronic
Nose to the Discrimination of Coffees,” Sensors and Actuators B, Vol. 6 (1992),
pp.- 71-75.

6. Okayama, Y., “Approach to Detection of Fires in Their Very Early Stage by
Odor Sensors and Neural Net,” Proceedings of the 3rd International Symposium
of Fire Safety Science (1991), p. 955-964,

7. Okayama, Y., Ito, T., and Sasaki, T., “Design of Neural Net to Detect Early
Stage of Fires and Evaluation by Using Real Sensors’ Data,” Proceedings of the
4th International Symposium on Fire Safety Science, (1994), Ottawa.

8. Dong, D., and McAvoy, T., “Nonlinear Principal Component Analysis
Based on Principal Curves and Neural Networks,” Computers and Chemical
Engineering, Vol. 20 (1996), pp. 65-78.

9. Kresta, J., Macgregor, J., and Marlin, T., “Multivariate Statistical
Monitoring of Process Operating Performance,” Canadian Journal of Chemical
Engineering, Vol. 69 (1991), pp. 35-47.

10. Nomikos, P., and Macgregor, J., “Monitoring Batch Processes Using
Multi-way PCA,” AIChE Journal, Vol. 40 (1994), pp. 1361-1375.

11. Pearson, K., “On Lines and Planes of Closest Fit to Systems of Points in
Space,” Phil. Mag., Vol. 2 (1901), pp. 559-572.

12. Hotelling, H., “Analysis of a Complex of Statistical Variables into
Principal Components”, Journal of Educational Psychology, Vol. 24 (1933) pp.
417-441, and 498-520.

13. Jolliffe, 1., Principal Component Analysis. New York: Springer-Verlag,
1986.

14. Jackson, J., “Principal Components and Factor Analysis: Part I-Principal
Components,” Journal of Quality Technology, Vol. 12 (1980), pp. 201-213.

15. Jackson, J., and Mudholkar, G., “Control Procedures for Residuals
Associated with Principal Component Analysis,” Technometrics, Vol. 21 (1979),
pp. 341-349.

16. Cavicchi, R. Suehle, J., Chaparala, P., Poirier, G., Kreider, K., Gaitan, M.,
and Semancik, S., “Micro-hotplate Temperature Cointrol for Sensor Fabrication,
Study, and Operation,” Proceedings of the Fifth International Meeting on
Chemical Sensors, (July 1994), Rome, Italy.

17. Denny, Samuel, “Development of a Discriminating Fire Detector for Use
in Residential Occupancies,” Report FP 93-07, M.S. Thesis, College Park, Fire
Protection Engineering, University of Maryland, December 1993.

18. Hagen, B. C., “Evaluation of Gaseous Signatures in Large-Scale Test,”
Report FP 94-05, M.S. Thesis, College Park, Fire Protection Engineering,
University of Maryland, December 1994,



24 Fire Technology First Quarter 1996

Appendix
This Appendix gives the equations from Jackson and Mudholkar'® that can be
used to calculated confidence limits on the SPE. First, define

6,= 3,0 (A1)
6,= 2 0. (A2)
6=y 0. (A-3)

where 0, is a diagonal entry of ¥, and the summations go from the number of
principal components used plus 1, z + 1, to the total number of measurements,
m. Let by =1%(26,8,/(36,%)) , then the quantity (@/6,)" is approximately nor-
mally distributed as:

Q16" = N1+ Ol £1)/ 67,20,7 1 67| (A4)

_0[(Q16) 16, £1)/ 67]
V20,0 s

Then for a fixed type I error @, the confidence limit on the SPE can be approxi-
mated as:

1/ ko
Qa .CE[CQ 262h02 /0] +1+ 62h0(h0 i-l)/ 6]2]1 (A 6)



